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From Single Particle to a BeamFrom Single Particle to a Beam
Phase Space
& Emittance
F. Sannibale

•• The number of particles per bunch in most accelerators is The number of particles per bunch in most accelerators is 
typically included between 10typically included between 1055 to 10to 101313. . 

•• Integrating the particle motion for such a large number of Integrating the particle motion for such a large number of 
particles along accelerators with length ranging from few particles along accelerators with length ranging from few 

meters up to tens of kilometers can prove to be a tough task.meters up to tens of kilometers can prove to be a tough task.

•• Fortunately, Fortunately, statistical mechanicsstatistical mechanics gives us very developed gives us very developed 
tools for representing and dealing with sets of large number tools for representing and dealing with sets of large number 

of particles.of particles.

•• Quite often, the statistical approach can give us elegant and Quite often, the statistical approach can give us elegant and 
powerful insights on properties that could be hard to extract powerful insights on properties that could be hard to extract 

by approaching the set using single particle techniques.by approaching the set using single particle techniques.
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A Convenient Reference FrameA Convenient Reference Frame
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•• In accelerators we are interested in studying particles along tIn accelerators we are interested in studying particles along their heir 
trajectory. A natural choice is to refer all the particles relattrajectory. A natural choice is to refer all the particles relat ively to a ively to a 

reference trajectoryreference trajectory ..

•• In each point of this trajectory we can define In each point of this trajectory we can define 
(for example) a Cartesian frame moving with (for example) a Cartesian frame moving with 

the reference particle .the reference particle .

•• In this frame the reference particle is always In this frame the reference particle is always 
at the origin and its momentum is always at the origin and its momentum is always 

parallel to the direction of the parallel to the direction of the zz axis.axis.

•• The coordinates {The coordinates {xx, , yy, , zz} for an arbitrary particle represent its } for an arbitrary particle represent its 
displacement relatively to the reference particle along the thredisplacement relatively to the reference particle along the three e 

directions.directions.

•• In the lab frame the particle moves on the curvilinear coordinaIn the lab frame the particle moves on the curvilinear coordinate te ss
with speed with speed dsds//dtdt. . 

•• Such a trajectory is assumed to be the solution of the Such a trajectory is assumed to be the solution of the LorentzLorentz equation equation 
for the particle with the nominal parameters (reference particlefor the particle with the nominal parameters (reference particle). ). 

z
y

x

ReferenceReference
trajectorytrajectory

yxz ˆˆˆ ×=
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Phase Space RepresentationPhase Space Representation
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In relativistic classical mechanics, the motion of a single In relativistic classical mechanics, the motion of a single 
particle is totally defined when, at a given instant particle is totally defined when, at a given instant t,t, the the 
position position rr and the momentum and the momentum pp of the particle are given of the particle are given 

together with the forces acting on that position.together with the forces acting on that position.
zzyyxxr iiii ˆˆˆ ++= zpypxpp ziyixi ˆˆˆ ++=

zFyFxFF zyx ˆˆˆ ++=

It is quite convenient to use the soIt is quite convenient to use the so--called called phase spacephase space
representation, a 6representation, a 6--D space where the D space where the ii thth particle assumes the particle assumes the 

coordinates: coordinates: 
{ }ziiyiixiii pzpypxP ,,,,,≡

In most accelerator physics calculations, the three planes can bIn most accelerator physics calculations, the three planes can be e 
considered with very good approximation as decoupled.considered with very good approximation as decoupled.

In this situation, it is possible and convenient to study the paIn this situation, it is possible and convenient to study the particle rticle 
evolution independently in each of the planes:evolution independently in each of the planes:

{ }xii px , { }yii py , { }zii pz ,
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Particles Systems & EnsemblesParticles Systems & Ensembles
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The phase space can now be used for representing particles:The phase space can now be used for representing particles:

The set of possible states for a system of The set of possible states for a system of NN particles particles 
is referred as is referred as ensembleensemble in statistical mechanics.in statistical mechanics.

In the statistical approach, the particles lose their In the statistical approach, the particles lose their 
individuality. The properties of the whole system individuality. The properties of the whole system 

as individual entity are now studied.as individual entity are now studied.

Important properties of the density functions can now be derivedImportant properties of the density functions can now be derived..
Under particular circumstances, such properties allow to calculUnder particular circumstances, such properties allow to calculate the ate the 

time evolution of the particle system without going through the time evolution of the particle system without going through the 
integration of the motion for each single particle.integration of the motion for each single particle.

( ) zyxzyxD dpdzdpdydpdxpzpypxf ,,,,,6
( ) zyxwdpdwpwf wwD ,,,2 =

The above expressions indicate the number of particles containedThe above expressions indicate the number of particles contained in the in the 
elementary volume of phase space for the 6D and 2D cases respectelementary volume of phase space for the 6D and 2D cases respect ively.ively.

zyxw ,,=

zyxwNdpdwf wD ,,2 ==�Ndpdzdpdydpdxf zyxD =� 6

The system is fully represented by the density of particles The system is fully represented by the density of particles ff66D D and and ff22DD ::
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Hamiltonian SystemsHamiltonian Systems
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NonNon--Hamiltonian Forces:Hamiltonian Forces:
••Stochastic processes (collisions, quantum emission, diffusion, …Stochastic processes (collisions, quantum emission, diffusion, …))

••Inelastic processes (ionization, fusion, fission, annihilation, Inelastic processes (ionization, fusion, fission, annihilation, …)…)
••Dissipative forces (viscosity, friction, …)Dissipative forces (viscosity, friction, …)

A system of variables A system of variables qq (generalized coordinates) and (generalized coordinates) and pp (generalized (generalized 
momentamomenta) is Hamiltonian when exists a function) is Hamiltonian when exists a function

HH((qq, , pp, , tt) that allows to describe the evolution of the system by:) that allows to describe the evolution of the system by:

The function The function HH is called is called HamiltonianHamiltonian and and qq and and pp are referred as are referred as 
canonical conjugate variables.canonical conjugate variables.

i

i

p

H

dt

dq

∂
∂=

i

i

q

H

dt

dp

∂
∂−=

In the particular case that In the particular case that qq are the usual spatial coordinates {are the usual spatial coordinates {xx, , yy, , zz} and } and 
p their conjugate p their conjugate momentamomenta {{ppxx, , ppyy, , ppzz}, }, HH coincides with the total energy of coincides with the total energy of 

the system:the system:

EnergyKineticEnergyPotential +=+= TUH

{ }
{ },,....,,

,,....,,

21
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N

N
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qqqq
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≡
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The Continuity EquationThe Continuity Equation
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If there is a flow of matter going inside the If there is a flow of matter going inside the 
volume then the density inside the volume volume then the density inside the volume 

must increase in order to must increase in order to conserve the massconserve the mass..

( ) dzdydxdVvolumetheinmassdzdydxtzyx =≡,,,ρ

dtdSnvdSdtvdm n ⋅−=−= ρρ dSnv
dt

dm ⋅−= ρ � ⋅−=
S

dSnv
dt

dM ρ

�=
V

dVM ρ �� ⋅−=
SV

dSnvdV
dt

d ρρ �� ⋅∇=⋅
VS

dVFdSnF

�� ⋅∇=⋅
VS

dVvdSnv ρρ �� ⋅∇−=
VV

dVvdV
dt

d ρρ

0=⋅∇+
∂
∂

v
t

ρρ

n

v

nvvn ⋅=

dS

The The continuity equationcontinuity equation is a consequence is a consequence 
of the conservation lawof the conservation law

Let the density Let the density ρ ρ ρ ρ ρ ρ ρ ρ ::

But it is also true that:But it is also true that:
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The The LiouvilleLiouville TheoremTheorem
Phase Space
& Emittance
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Let us use the continuity equation with our phase space distribuLet us use the continuity equation with our phase space distributions.tions.
For simplicity we will use the 2D distribution, but the same exaFor simplicity we will use the 2D distribution, but the same exact results ct results 

apply to the more general 6D case.apply to the more general 6D case.

But our system is HamiltonianBut our system is Hamiltonian

LiouvilleLiouville TheoremTheorem: The phase space density for : The phase space density for 
a Hamiltonian system is an invariant of the a Hamiltonian system is an invariant of the 
motion. Or equivalently, the phase space motion. Or equivalently, the phase space 

volume occupied by the system is conserved.volume occupied by the system is conserved.
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Decoupling the Problem:Decoupling the Problem:
the Longitudinal Phase Spacethe Longitudinal Phase Space

Phase Space
& Emittance
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0

0

E

EE −=δ

•• In most of existing accelerators the phase space planes are weaIn most of existing accelerators the phase space planes are weakly kly 
coupled. In particular, we can treat the longitudinal plane indecoupled. In particular, we can treat the longitudinal plane independently pendently 

from the transverse one in the large majority of the cases.from the transverse one in the large majority of the cases.

•• In the longitudinal plane we apply our electric fields for acceIn the longitudinal plane we apply our electric fields for accelerating the lerating the 
particles and changing their energy.particles and changing their energy.

•• It becomes natural to use It becomes natural to use energyenergy as one of the longitudinal plane as one of the longitudinal plane 
variable together with its canonical conjugate variable together with its canonical conjugate timetime. . 

•• The effects of the weak coupling can be then investigated as a The effects of the weak coupling can be then investigated as a 
perturbation of the uncoupled case.perturbation of the uncoupled case.

•• In accelerator physics, the In accelerator physics, the relative energy variationrelative energy variation δδδδδδδδ and the and the relative relative 
time ‘distance’time ‘distance’ ττττττττ with respect to a reference particle are often used:with respect to a reference particle are often used:

0tt −=τ

•• According to According to LiouvilleLiouville, in the presence of Hamiltonian forces, the area , in the presence of Hamiltonian forces, the area 
occupied by the beam in the longitudinal phase space is conserveoccupied by the beam in the longitudinal phase space is conserved.d.

•• More in Lecture 8…….More in Lecture 8…….
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The Transverse Phase SpaceThe Transverse Phase Space
Phase Space
& Emittance
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ds

dx
xpxi =′→

For the transverse planes {For the transverse planes {xx, , ppxx} and {} and {yy, , ppyy}, it is usually used a slightly }, it is usually used a slightly 
modified phase space where the momentum components are replaced modified phase space where the momentum components are replaced by:by:

ds

dy
ypyi =′→

The physical meaning of the new variables:The physical meaning of the new variables:

xcm
ds

dx
vm

dt

dx
mp sx ′=== 000 βγγγ

yds

dy
y θtan==′

w

s

PROJECTIONWSp

wθxds

dx
x θtan==′

ycmpy ′= 0βγ
( ) 2121

−
−== βγβ and

c

v
where s

Note that Note that xx and and ppxx are canonical conjugate variables while are canonical conjugate variables while xx and and xx�� are are 
not unless there is no acceleration (not unless there is no acceleration (γγγγγγγγ and and ββββββββ constant)constant)

yxw ,=
The relation between this new variables and the The relation between this new variables and the 

momentum (when momentum (when BBzz = 0) is:= 0) is:
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Definition of Definition of EmittanceEmittance
Phase Space
& Emittance
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We will consider the decoupled case and use  the We will consider the decoupled case and use  the 
{ { ww, , ww�� } plane where } plane where ww can be either can be either xx or or yy..x′

x

We define as We define as emittanceemittance the phase space area the phase space area 
occupied by the system of particles, divided by occupied by the system of particles, divided by ππππππππ

yxw
A ww

w ,== ′

π
ε

As we previously shown, As we previously shown, xx�� and  and  yy�� are conjugate to are conjugate to xx and and yy when when BBzz = 0 = 0 
and in absence of acceleration. In this case, we can immediatelyand in absence of acceleration. In this case, we can immediately apply apply 
the the LiouvilleLiouville theorem and state that for such a system the theorem and state that for such a system the emittanceemittance is is 

an invariant of the motionan invariant of the motion..

This specific case is actually extremely important.This specific case is actually extremely important.
In fact, for most of the elements in a beam In fact, for most of the elements in a beam transferlinetransferline, such as dipoles, , such as dipoles, 

quadrupolesquadrupoles, , sextupolessextupoles, …, the above conditions apply and the , …, the above conditions apply and the 
emittanceemittance is conserved.is conserved.
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EmittanceEmittance Conservation inConservation in
The Presence of The Presence of BBzz

Phase Space
& Emittance
F. Sannibale

•• When the When the BBzz component of the magnetic field is present (component of the magnetic field is present (solenoidalsolenoidal
lenses for example), the transverse planes become coupled and thlenses for example), the transverse planes become coupled and the e 
phase space area occupied by the system in each of the transversphase space area occupied by the system in each of the transverse e 

planes is not conserved anymore.planes is not conserved anymore.

•• Anyway in this situation, the Anyway in this situation, the LiouvilleLiouville theorem still applies to the 4D theorem still applies to the 4D 
transverse phase space where the transverse phase space where the ipervolumeipervolume occupied by our system is occupied by our system is 

still a motion invariant.still a motion invariant.
•• Actually, if we rotate the spatial reference frame around the Actually, if we rotate the spatial reference frame around the zz axis by the axis by the 
LarmorLarmor frequencyfrequency ωωωωωωωωLL = = qBqBzz / / 22γ γ γ γ γ γ γ γ mm00, then the planes become decoupled and , then the planes become decoupled and 

the phase space area in each of the planes is conserved again. the phase space area in each of the planes is conserved again. 

z
x
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EmittanceEmittance Conservation inConservation in
The Presence of AccelerationThe Presence of Acceleration

Phase Space
& Emittance
F. Sannibale

When the particles in a beam undergo to acceleration, When the particles in a beam undergo to acceleration, β β β β β β β β and and γγγγγγγγ change change 
and the variables and the variables xx and and xx�� are not canonical anymore. are not canonical anymore. LiouvilleLiouville theorem theorem 

does not apply and the does not apply and the emittanceemittance is not conserved.is not conserved.

The last expression tells us that the quantity The last expression tells us that the quantity β γ εβ γ εβ γ εβ γ εβ γ εβ γ εβ γ εβ γ ε is a system invariant is a system invariant 
during acceleration. By defining the during acceleration. By defining the normalized normalized emittanceemittance::
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Accelerated by Ez
Accelerated by Ez

yxwwwn ,== εγβε
We can say that the We can say that the normalized normalized emittanceemittance is conserved during accelerationis conserved during acceleration..

The acceleration couples the longitudinal plane with the transveThe acceleration couples the longitudinal plane with the transverse one:rse one:
the 6D the 6D emittanceemittance is still conserved but the transverse is not. is still conserved but the transverse is not. 
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The Real Beam Case:The Real Beam Case:
r.m.sr.m.s EmittanceEmittance

Phase Space
& Emittance
F. Sannibale

222 xxxxrms ′−′=ε

( )
( )�

��
′′

′′
≅= =

xddxxxf

xddxxxfx

N

x
x

D

D

N

n
n

,

,

2

2
2

1

2

2 ( )
( )�

��
′′

′′′
≅

′
=′ =

xddxxxf

xddxxxfx

N

x
x

D

D

N

n
n

,

,

2

2
2

1

2

2

( )
( )�

��
′′

′′′
≅

′
=′ =

xddxxxf

xddxxxfxx

N

xx
xx

D

D

N

n
nn

,

,

2

21

x

x′

rms
rmsrmsrms

xx
xx

x
x

x
x

ε
εεε

=′
′

−′+
′

22

2

2

2

For a real beam composed by For a real beam composed by NN particles we can calculate the second particles we can calculate the second 
order statistical moments of their phase space distribution:order statistical moments of their phase space distribution:

And define the And define the rmsrms emittanceemittance as the quantity:as the quantity:

This is equivalent to associate to the real This is equivalent to associate to the real 
beam an beam an equivalent or phase ellipseequivalent or phase ellipse in the in the 
phase space with area phase space with area ππππππππ εεεεεεεεrmsrms and equation:and equation:

2x′

2x
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Nonlinear ForcesNonlinear Forces
and and FilamentationFilamentation

Phase Space
& Emittance
F. Sannibale

•• In the case of a Hamiltonian system, as a consequence of the In the case of a Hamiltonian system, as a consequence of the LiouvilleLiouville
Theorem the Theorem the emittanceemittance is conservedis conserved

•• This is true even when the forces acting are on the system are This is true even when the forces acting are on the system are 
nonlinear nonlinear (space charge, nonlinear magnetic and/or electric (space charge, nonlinear magnetic and/or electric filedsfileds, …), …)

•• This is This is notnot true in the case of the true in the case of the rmsrms emittanceemittance..
••In the presence of nonlinear forces the In the presence of nonlinear forces the rmsrms emittanceemittance is not conservedis not conserved

•• Example: Example: filamentationfilamentation . Particles with different phase space coordinates, . Particles with different phase space coordinates, 
because of the nonlinear forces, move with different phase spacebecause of the nonlinear forces, move with different phase space velocityvelocity

But the But the rmsrms emittanceemittance calculated for increasing times calculated for increasing times increasesincreases..

•• The The emittanceemittance according to according to LiouvilleLiouville is still conserved.is still conserved.
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The The TwissTwiss ParametersParameters
Phase Space
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We saw that a beam with arbitrary phase space We saw that a beam with arbitrary phase space 
distribution can be represented by an equivalent distribution can be represented by an equivalent 

ellipse with area equal to the ellipse with area equal to the rmsrms emittanceemittance divided divided 
by by ππππππππ. and with equation: . and with equation: 

yxwwwww wTwTwTw ,222 ==′++′ εαγβ 1with 2 =− TwTwTw αγβ

The status of the beam at a given moment is totally defined whenThe status of the beam at a given moment is totally defined when the the 
emittanceemittance and two of the and two of the TwissTwiss parameters are known. parameters are known. 
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A convenient representation for this ellipse, often used in acceA convenient representation for this ellipse, often used in accelerator lerator 
physics, is the one by the sophysics, is the one by the so--called called TwissTwiss Parameters Parameters ββββββββTT, , γγγγγγγγTT and and ααααααααTT ::

By comparing the two ellipse equations, we can derive:By comparing the two ellipse equations, we can derive:

yxwwwww wTwwTwwTw ,22 =−=′=′= εαεγεβ
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Propagating the Propagating the TwissTwiss ParametersParameters
Phase Space
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When the beam propagates along the When the beam propagates along the beamlinebeamline, the eccentricity and the , the eccentricity and the 
orientation of the equivalent ellipse change while the area remaorientation of the equivalent ellipse change while the area remains ins 
constant (constant (LiouvilleLiouville theorem). In other words, the theorem). In other words, the TwissTwiss parameters parameters 
change along the line according to the action of the line elemenchange along the line according to the action of the line elements.ts.
x′

x

The single particle matrix formalism can now be extended to the The single particle matrix formalism can now be extended to the TwissTwiss
parameters. For example for a drift of length parameters. For example for a drift of length LL in the horizontal plane:in the horizontal plane:
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Getting Familiar with theGetting Familiar with the
Concept of Concept of EmittanceEmittance

Phase Space
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A couple of examples:A couple of examples:

Propagation of  beams with Propagation of  beams with 
different different emittanceemittance through a through a 

FODO latticeFODO lattice

Propagation of  beams with Propagation of  beams with 
different different emittanceemittance through a through a 

drift spacedrift space
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The Concept of AcceptanceThe Concept of Acceptance
Phase Space
& Emittance
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Example: Acceptance of a slitExample: Acceptance of a slit

y

y’

-h/2

h/d

-h/d

-h/2h
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Electron
Trajectories

Matched beam 
emittance

Acceptance at 
the slit entrance

Unmatched 
beam emittance
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The The EmittanceEmittance RoleRole
In Accelerator ApplicationsIn Accelerator Applications
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The The emittanceemittance is a fundamental parameter in mostis a fundamental parameter in most
accelerator applications.accelerator applications.

•• Free electron lasers (FEL):Free electron lasers (FEL): Intensity of the radiation Intensity of the radiation 
strongly depends on strongly depends on emittanceemittance. The smaller the better . The smaller the better 

•• Synchrotron light sources:Synchrotron light sources: smaller smaller emittancesemittances gives gives 
higher brightness higher brightness 

•• CollidersColliders:: higher higher emittancesemittances give higher luminosity give higher luminosity 
(in beam(in beam--beam limited regime)beam limited regime)

•• Electron microscopes:Electron microscopes: High resolution requires lower High resolution requires lower 
emittancesemittances

•• … … 



21

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Possible HomeworkPossible Homework
Phase Space
& Emittance
F. Sannibale

•• Calculate the Calculate the TwissTwiss parameter transport matrix for both planes parameter transport matrix for both planes 
of a focusing of a focusing quadrupolequadrupole in the thin lens approximation.in the thin lens approximation.

•• Prove the relation Prove the relation εεεεεεεε//εεεεεεεε00==yy’/’/yy’’00, where , where εεεεεεεε and and εεεεεεεε00 are the vertical are the vertical 
emittanceemittance after and before acceleration by a field after and before acceleration by a field EEzz, and , and yy’ and ’ and 

yy’’00 are the divergences after and before acceleration.are the divergences after and before acceleration.
Tip: use the definition of Tip: use the definition of rmsrms emittanceemittance


